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Abstract. Recent advancements in Novel View Synthesis (NVS) from
a single image have produced impressive results by leveraging the gener-
ation capabilities of pre-trained Text-to-Image (T2I) models. However,
previous NVS approaches require extra optimization to use other plug-
and-play image generation modules such as ControlNet and LoRA, as
they fine-tune the T2l parameters. In this study, we propose an efficient
plug-and-play adaptation module, NVS-Adapter, that is compatible with
existing plug-and-play modules without extensive fine-tuning. We intro-
duce target views and reference view alignment to improve the geometric
consistency of multi-view predictions. Experimental results demonstrate
the compatibility of our NVS-Adapter with existing plug-and-play mod-
ules. Moreover, our NVS-Adapter shows superior performance over state-
of-the-art methods on NVS benchmarks although it does not fine-tune
billions of parameters of the pre-trained T2I models. The code and data
are publicly available at postech-cvlab.github.io/nvsadapter/ E|

1 Introduction

The Novel View Synthesis (NVS) task, i.e., generating novel views from a set of
images, has drawn significant attention in 3D vision due to its wide applicability
in AR, VR, and robotics. Among different setups for the task, NVS from a single
image is particularly challenging due to limited information in generating unseen
and occluded regions of objects and scenes. As generative models have shown
remarkable progress in learning geometry and semantics of the real world, recent
methods often leverage the models as a prior to reconstruct 3D geometry from
a single image, e.g., by training diffusion models [18}[24L/51] on NVS datasets to
generate reliable multi-views [58,/66] or neural fields [2,/4,/16].

Despite their notable efficacy, these methods require categorical priors of 3D
objects due to the limited scale of NVS datasets, resulting in a lack of generaliz-
ability to unseen visual objects. As a breakthrough, recent work [2,4,/16] aims to
improve generalizability by fine-tuning pre-trained Text-to-Image (T2I) models
on large-scale 3D object datasets [8}/9]. However, since they fine-tune pre-trained
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T2I models, they require additional fine-tuning |48| to adopt plug-and-play im-
age generation modules such as ControlNet [64] and LoRA [19]. This fine-tuning
process necessitates expensive datasets that provide both the new condition and
multi-view images, limiting the usage in practice.

In this work, we propose an efficient framework for training a plug-and-play
T2I adaptation module, NVS-Adapter, for NVS from a single image by freez-
ing the parameters of the pre-trained T2l model. NVS-Adapter aligns the ge-
ometries of multi-views, resulting in consistent multi-view predictions that are
crucial for reliable 3D generation. Moreover, our framework, which trains only
additional cross-attentions, obviates the necessity of training billions of parame-
ters, in contrast to previous approaches. In detail, our NVS-Adapter consists of
two trainable components: view-consistency cross-attention and global semantic
conditioning. The view-consistency cross-attention learns visual correspondences
between views to align their local details while efficiently aggregating features
from multi-views. Additionally, the global semantic conditioning facilitates the
model to grasp global structure of visual objects.

Experimental results demonstrate that NVS-Adapter synthesizes geomet-
rically consistent multi-views, achieving superior performance to previous ap-
proaches although we do not train billions of parameters of the T2I model. We
further verify that NVS-Adapter is fully compatible with existing plug-and-play
modules such as ControlNet [64] and LoRA [19], allowing controlled and cus-
tomized multi-view generation without additional training.

Our contributions can be summarized as follows: 1) We propose a novel
plug-and-play NVS-Adapter with two view-alignment cross-attentions. We addi-
tionally adopt global semantic conditioning to facilitate the model to grasp the
global structure of visual objects. 2) We demonstrate that NVS-Adapter gener-
ates geometrically consistent multi-views from a single image. 3) We verify that
our plug-and-play adaptation module is fully compatible with other plug-and-
play T2I modules without additional training.

2 Related Work

Plug-and-Play Image Generation Modules Existing studies propose plug-
and-play image generation modules for conditional [34}/64] and customized [19]
image generation by preserving the parameters of pre-trained T2I models. T2I-
Adapter [34] optimizes additional trainable projectors to handle auxiliary con-
ditions. ControlNet [64] clones the T2I model and optimizes the cloned one as a
condition handler. LoRA [19] efficiently optimizes residual parameters by rank
decomposition matrices for customized image generation. Recently, Zero123++ [48|
pioneers a controllable multi-view generation by fine-tuning a multi-view dif-
fusion model with depth-conditioned ControlNet. However, it still requires an
additional training process to leverage the depth-conditioned ControlNet.

Generative Models for 3D Objects Generative models have shown re-
markable progress in synthesizing 3D objects. Geometry-aware generative mod-
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els [3L[15L[39L/59] adopt adversarial training to implicitly learn 3D representation
of faces [3] or scenes [39,/59] from 2D images. Recent studies train diffusion mod-
els [18}/241|51] to directly generate 3D representations [2}/7.|13,22}/23}|35,[37} /38|
401/504/63]. As another direction, several work trains diffusion models on multi-
view datasets [5,/43}[62] to synthesize novel views via cross-attentions [58,/66] or
implicit feature fields [4L{16L/61].

Text-to-3D Generation via 2D Diffusion Prior Recent work on T2I diffu-
sion models enables generating 3D representations from a text prompt without
3D data. The seminal work [41] proposes score distillation sampling (SDS) that
optimizes a 3D representation by supervising its rendered views with the scores
of pre-trained T2I models. Along with the advances in neural fields |36,47./55,56],
the existing studies [6,[27}/54,57] have consistently improved the performance of
SDS. As another direction, low-rank adaptation |19|, structural conditions [64],
and view-dependent texts [41] are leveraged to maintain the multi-view con-
sistency of generated 3D representations [32,/46,/57]. However, the generated
3D contents still lack geometric consistency despite their high fidelity since the
training data of T2I models do not contain precise information of underlying 3D
geometries.

Fine-tuning T2I Models for Novel View Synthesis Existing studies mod-
ify and fine-tune T2I models on multi-view datasets to generate high-quality
and diverse images for novel view synthesis. Zero-1-to-3 [8,[29] concatenates a
reference image into the input of U-Net after modifying text cross-attentions for
image embeddings with relative camera extrinsics |26]. Despite fine-tuning on
Objaverse [8}9], generated views suffer from geometric inconsistency and inac-
curate camera viewpoints since the model cannot explicitly learn visual corre-
spondences between the reference and generated views [48]. ConsistNet [60] and
SyncDreamer [30] are built on Zero-1-to-3 to synthesize multiple novel views
with an unprojection operation. MVDream [49] leverages 3D self-attentions for
3D-aware multi-view generation. Wonder3D [31] fine-tunes the Stable Diffusion
Image Variations Model [26] to generate multi-view normal maps alongside color
images. Zerol23++ [48] and One-2-3-45++ [28], which are concurrent to our
work, adopt the reference attention technique |65] and fine-tune the original
self-attentions for NVS from a single image. However, they are limited to render
only fixed viewpoints. MVD-Fusion [20] jointly infers depth to produce multi-
view consistent novel views. In detail, it generates multi-view RGB-D images
and leverages the depth estimates to obtain reprojection-based conditioning to
maintain multi-view consistency. EscherNet 25| learns implicit and generative
3D representations coupled with a specialised camera positional encoding to
predict novel views. Despite their capability for high-quality generation, these
models still require training billions of parameters, as they fine-tune the pa-
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Fig. 1: Overview of our framework. NVS-Adapter synthesizes novel views by incor-
porating two components into each U-Net block of a pre-trained T2I model: view-
consistency cross-attention which aligns features of each target view with the relevant
features of other views, and global semantic conditioning which aligns the features of
target views with the global semantic structure of the reference.

rameters of T2I models. In contrast, our framework enables efficient training by
training only additional cross-attention modules.

3 Methods

Our framework synthesizes novel views from a single image for diverse 3D ob-
jects, while preserving the original parameters of T2I models. Figure [T]illustrates
the overall architecture. We first introduce the preliminaries of diffusion models
and novel view synthesis, and then formulate the task of novel view synthesis
from a single image. Lastly, we explain how our NVS-Adapter synthesizes geo-
metrically consistent multi-views of visual objects in a plug-and-play manner.

3.1 Preliminaries

Diffusion Models Diffusion models learn a data distribution ¢(x) using grad-
ually corrupted latents xi,...,x7, where q(x¢|xq) := N (x4 /arxo, (1 — ay)I)
and xg = x. Then, a diffusion model py(xo.r) aims to predict the reverse pro-
cess of the Markov chain with Gaussian transitions to denoise the latents as
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pa(XO:T) = p(XT) Hthl p@(Xt—l\Xt)7 where p(XT) = N(XT|0; I), p@(Xt—l\Xt) =
N (x5 (x4, t),021), and o is a constant at ¢. Given a constant oy at timestep
t, the predicted mean is defined as pg(x¢,t) := (x; — /1 — e (x4, t))/y/0, and
the noise predictor €y minimizes the reweighted variational lower bound [18]:

LSiHlple = ]Etxoﬁme - EQ(Xt’ t)HQ]? (1)

where x; = \/ayxg + /1 — aye, and € ~ N (0,1).

Latent Diffusion Models Latent diffusion models (LDMs) |44] generate high-
resolution images with their two-stage framework. In the first stage, an autoen-
coder |14], which consists of an encoder £ and a decoder D, learns to compress
a high-resolution RGB image x € RF*W>3 into a low-resolution feature map
z = £(x) € RI/FXW/FXC with the encoder and reconstruct the image from the
latent as x ~ D(E(x)) with the decoder, where f is the downsampling factor and
C' is the dimension of latent features. In the second stage, the U-Net [10L|45] of
diffusion models processes features on the latent space of z instead of the image
space of x. Each U-Net block of LDMs, such as Stable Diffusion, comprises a
ResNet block followed by a self-attention of image features and a cross-attention
between image and text features.

Novel View Synthesis from a Single Image Given a reference view of a 3D
object, we aim to generate rendered images from novel viewpoints. Let the ref-
erence RGB image x**f € RZXWx3 N relative camera viewpoints to a reference
viewpoint P = {py,...,pn}, the rendered novel views x(P) = {x(P1) _ x(P~)}
are given, where p; = [R;;T;] € R3** is i-th camera viewpoint with relative
camera rotation R; € R3*3 and translation 7; € R3, and its rendered novel view
x(Pi) | respectively. Then, a generative model learns a conditional distribution
q(x®)|x*f P) to synthesize novel views x(P) given a reference view x™f. For
the brevity of notation, we denote q(x®)|x"f, P) by ¢(x®)|x**f). Note that a
powerful generative model such as a diffusion model is required, since the model
has to extrapolate unseen or occluded parts of the 3D object.

3.2 LDMs for NVS from a Single Image

We formulate the task of synthesizing novel views from a single image based on
LDMs, since we exploit the pre-trained LDM, Stable Diffusion. Specifically, a
LDM learns a conditional distribution ¢(zF)|z*°f), where z'f = £(x™f) and
z®) = {z(P)}N  denote latent features of a reference view and N target
views, respectively. For simplicity, previous approaches [29,[58] assume that all
the target views z(P) are independently drawn from the reference image, i.e.,
Do (zg)1 \zgp), z'f) = Hfil pg(zgi)il) zl(tpi), z*'), where noised latent features of the
target views are z\P") = \/Othép"') + /1 — aye with € ~ N(0,I). Then, the ap-
P)), (P)
z, |z

proximate posterior at a specific timestep ¢ is formulated as ¢(

)

Zref) —
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Hilil q(zgpi) |zépi), z*!). However, the independence assumption leads to geomet-
ric inconsistency across predicted target views, since the generation process does
not align the geometries among the target views. Thus, our denoising process
aligns views to consider the geometric correspondences among the target views:

N
P P re i P re
po(zit) |z 2 = [ po(a) 2", 2, (2)
=1

where the latent features of each i-th target view zglfl) is aligned with the refer-

ence view z*f and the other target views {zﬁ”j)}je{l,.,. ~N1\{i}- Note that we do

not corrupt the reference view to preserve fine-grained details of visual objects.

3.3 NVS-Adapter

We propose a plug-and-play T2I adaptation module, NV, to effectively syn-
thesize consistent novel multi-views from a single image. We incorporate the
adaptation modules into each U-Net block as illustrated in Figure [I} While the
features of different views are separately processed, the two components, view-
consistency cross-attention and global semantic conditioning, effectively align the
intermediate features across views. The view-consistency cross-attention aligns
the intermediate target features to have consistent local details by learning vi-
sual correspondences between different views. The global semantic conditioning
provide the semantic information of visual objects in the reference image.

View-Consistency Cross-Attention Our view-consistency cross-attention
sequentially conducts the target views alignment and the reference view align-
ment, which align a target view with the other target views and the reference
view, respectively. Since every block in a U-Net share the same details, we de-
scribe the details in on one specific block without the loss of generality.

Target Views Alignment The ResNet and the self-attention block from the pre-
trained T2I model separately extracts the features fF) = {f(P)}N | of target
views, where f(Pi) € RPX®wx¢ i the feature of the i-th target view with a h x w
resolution and ¢ channels. Inspired by the attention operation of Perceiver |21],
we aggregate the features of the target views using L learnable tokens q € RE*¢
as

q:=MHA(Q = q,KV = f®) 4 (), (3)

where Q and KV denote the query and key-value of a multi-head attention
(MHA) [53] operation, and v(F) = {4®P)1N  denotes the positional embed-
dings of the camera poses P of the target views. Note that we use relative
camera poses to the reference view. When we encode the positional embeddings
~Pi) ¢ RFXwxe ynder the i-th view into sinusoidal embeddings 33|, we represent
ray positions with the Pliicker coordinate [11] to effectively learn the geomet-
ric relation among rays. We remark that the parameters of learnable tokens q
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are shared across all target views. Subsequently, each target view leverages q to
aggregate the matched features from the other target views as

£y = £7) + MHA(Q = £®) 4+ +®) KV = g), (4)
where f%:) are target-views-aligned features of £(P).

Reference View Alignment After the target views alignment in Eq. (4)), we per-
form the reference view alignment to ensure the consistency of details between
the reference view, which is the only condition for NVS from a single image, and
the generated target views. In detail, the model forwards an additional MHA
operation as

£5) = £8) + MHA(Q = £15) + 4P KV = frof 4 yref), (5)

where f'*f and 4% are the ResNet feature and the positional embedding of the
reference view. Similarly, the reference view alignment is applied to the reference
features, considering it as a self-attention operation:

fiea == £ + MHA(Q = 55 + 0™ KV = ). (6)

fref

The aligned features fl()LPA) and f5 are used as an input to the next module,

global semantic conditioning.

Global Semantic Conditioning Our NVS-Adapter also incorporates a cross-
attention of global semantic conditioning 29| to inject the global semantic struc-
ture of visual objects in the reference image to different novel views. Note that
NVS from a single image assumes a reference image is given without its text
captions, unlike the conventional T2I setup, which takes the text as input. We
extract CLIP [42] image embeddings of the reference view to conduct a cross-
attention operation between the features of each view and the CLIP image em-
beddings, as shown in Figure [I}

4 Experiments

In this section, we conduct extensive experiments to demonstrate the effective-
ness of our NVS-Adapter. In Section [£.I] we evaluate our framework on NVS
benchmarks and also show qualitative 3D generation results on various scenar-
ios such as image-to-3D (I23D) and T23D. Then, in Section we show that
our plug-and-play module is compatible with other plug-and-play T2I modules
without extra optimization. Furthermore, in Section [£:3] we show our model gen-
erates high-fidelity radiance fields via Score Distillation Sampling (SDS). Lastly,
in Section [4.4] and we provide in-depth studies to analyze the efficacy of our
NVS-Adapter to understand the geometry across different viewpoints of visual
objects.
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Fig. 2: Novel view synthesis examples by Zero-1-to-3 29|, Zero123-XL , and our
NVS-Adapter with N = 1 and N = 4. Top images: NVS results conditioned on an
image from Objaverse @] and GSO validation set. Bottom images: NVS results
conditioned on a single image used in SyncDreamer . The first column presents a
reference image, and the rest of four columns are synthesized views by each model. Note
that the "Bottom images" do not have the ground truth images for target viewpoints
since they are not from multi-view datasets.

Implementation Details We implement our NVS-Adapter on Stable Diffusion
2.1-base [1] (SD2.1) and train our framework on Objaverse [9], which includes
800K 3D assets. To demonstrate the compatibility with ControlNet and LoRA
models, we repeat this process on Stable Diffusion 1.5-base (SD1.5) instead of
SD2.1, as SD1.5 provides a wider range of ControlNet and LoRA models
and thereby allows comprehensive experimentation. For a fair comparison with
Zero-1-to-3 , we use the same training dataset with the image resolution
of 256x256. Our NVS-Adapter uses h x w learnable tokens q for target views
alignment in Eq. at every U-Net block, while aggregating N = 4 target
views. Our model is trained for 200K iterations with the batch size of 256, using
16 NVIDIA A100 80GB GPUs for 5 days. For more details, please refer to the
supplementary materials.
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Table 1: Comparison of NVS scores on Objaverse 9] (left) and Google Scanned Ob-
jects [12] (right) with Zero-1-to-3 |29] and Zero123-XL [8]. We also report scores when
our model is combined with ControlNet |64] with three conditions: depth, canny, and
HED. Note that no additional fine-tuning is required to attach the ControlNet.

Objaverse Google Scanned Objects
PSNR(T) SSIM(T) LPIPS(}) PSNR(T) SSIM(T) LPIPS(])
Zero-1-to-3 19.52 0.8603 0.1251 18.36 + 0.02 0.8418 + 0.0005 0.1283 £ 0.0006
Zerol123-XL 17.71 0.8258 0.1552 18.46 + 0.11 0.8351 + 0.0015 0.1267 £ 0.0009
ours (SD21) 19.58 0.8658 0.1135 18.80 + 0.07 0.8469 + 0.0010 0.1207 + 0.0010
ours (SD15) 17.05 0.8338 0.1480 17.87 £ 0.14 0.8331 & 0.0004 0.1327 & 0.0007
w. canny 20.82 0.8788 0.0977 20.64 + 0.03 0.8624 + 0.0009 0.1030 + 0.0004
w. depth 20.99 0.8839 0.0900 20.20 + 0.03 0.8611 + 0.0006 0.1057 + 0.0002
w. HED 22.02 0.8982 0.0811 22.77 £ 0.03 0.8820 + 0.0003 0.0912 + 0.0004

4.1 Novel View Synthesis from a Single Image

We evaluate our framework on the validation split of Objaverse [9] and a subset of
Google Scanned Objects (GSO) [12], containing high-quality scanned 3D assets.
We use 12 and 16 rendered views for each object following the rendering pipeline
of Zero-1-t0-3 [29] on Objaverse and GSO, respectively. We randomly partition
16 target views to have 4 target views for each batch and report the mean and
standard deviation of results with three repetitions for GSO. Due to the huge
computational budgets of the validation on Objaverse, we omit the repetition.
Table (1] (left) shows the competitive results with previous methods of Zero-1-
to-3 and Zerol23-XL in terms of PSNR, SSIM, and LPIPS [52|. In Table
(right), our NVS-Adapter also outperforms Zero-1-to-3 and Zero123-XL on GSO,
achieving higher generalization performance. Note that our NVS-Adapter shows
notably better LPIPS score than previous approaches, indicating that our model
fully exploits the generation capacity of the pre-trained T2I model. We also
remark that Zero-1-to-3 and Zerol123-XL fine-tune over one billion parameters,
and Zerol123-XL learns 12 times more 3D assets than our NVS-Adapter. These
results indicate our plug-and-play NVS-Adapter can efficiently and effectively
adapt a T2I model to synthesize novel views from a single image.

Figure [2] visualizes the synthesized novel views by our NVS-Adapter and
previous methods [29]. Additionally, we visualize NVS results on images used in
SyncDreamer [30] to show that our NVS-Adapter well generalizes on arbitrary
images that are not from multi-view datasets. Zero-1-to-3 [29] and Zero123-
XL [829] commonly suffer from the inconsistency of generated views, since they
cannot synthesize multi-views at once. Although NVS-Adapter with N = 1 lacks
the consistency of generated views, it shows better correspondences between the
reference and target views than Zero-1-to-3, since the view-consistency cross-
attention layers learn the correspondences among view features. In contrast, our
NVS-Adapter with N = 4 well aligns the features of multi-views and effectively
generates consistent multi-views at once.
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4.2 Compatibility with ControlNets and LoRAs

Since NVS-Adapter is fully compatible with existing plug-and-play modules, our
framework can cover various scenarios on NVS without extra optimization. We
demonstrate the effectiveness of our NVS-Adapter on two widely used scenarios,
controllable generation with ControlNet [64] and customized generation with
LoRA |[19], tailored to NVS from a single image.

For controllable NVS with ControlNet, we exploit the three conditions of
ControlNet, canny edge, depth, and HED, to guide the multi-view generation.
Table [I] shows that our NVS-Adapter can exploit canny edge, depth, and HED
conditions to significantly improve the NVS performance. Figure [ (left) shows
that the synthesized novel views are guided by each condition. For instance,
the first two examples are generating novel views in unobserved regions. NVS-
Adapters with ControlNet address the ambiguities by the guidance from condi-
tions. In the last example, our NVS-Adapter without ControlNet suffers from in-
tricate geometries of a molecular toy while the ControlNet-guided NVS-Adapters
generate accurate results.

For customized NVS with LoRA, we update the pre-trained T2I model with
three LoRA models -friedegg, gemstone, and blueresin- that are tailored to gen-
erate objects with unique textures. We use the same LoRA models for generating
a reference image and multi-view images. We found that our NVS-Adapter with
LoRA preserves the styles provided by the LoRA when generating multi-views
as visualized in Figure [ (right). According to the results, NVS-Adapter with
LoRA avoids oversimplified appearance (up), captures complex details (middle),
and includes physical phenomena like reflection (down). We remark that our
framework does not require additional training for the compatibility with Con-
trolNets and LoRAs, different from previous approaches |48|. For more details,
please refer to the supplementary materials.

4.3 3D Reconstruction

We leverage our framework with NVS-Adapter to reconstruct 3D geometry from
a single image, incorporating Score Distillation Sampling (SDS) [41]. We freeze
the parameters of our framework and optimize InstantNGP [36] to generate
3D consistent representations. We use threestudio [17] implementations based
on the setting of Zero-1-to-3 to compare our framework with other methods.
We also employ opacity regularization to reduce noisy structures. In the coarse
stage of training, we optimize the model for 5,000 iterations with batch size 16.
Following the coarse stage, we further optimize the model for 3,000 iterations
with a reduced batch size of 8. We sample a timestep ¢ in the range [0.02, 0.98] and
linearly decay the maximum timestep 4, to 0.5 during the coarse stage [27].
We attach the implementation details to the supplementary materials.

Figure [3] compares the generated 3D representations via SDS of Zero-1-to-3,
Zerol123-XL, and our framework with NVS-Adapter. We first generate images
from input texts as reference views to compare our framework with Dreamfu-
sion [41]. Zero-1-to-3, Zerol123-XL, and our framework generate 3D following
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Fig. 3: 3D reconstruction examples via Score Distillation Sampling (SDS) [41] with
baselines [8}/29] and our NVS-Adapter. Top images shows 3D reconstructions results
conditioned on an image generated by T2I model, and bottom images shows results on
an image in the wild.
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Fig. 4: (left) Examples of NVS results of our NVS-Adapter with and without Con-
trolNet [64] variants. (right) Examples of NVS results of our NVS-Adapter with and
without LoRA [19] models. We use the same LoRA models for generating a reference
image and multi-view images.

the high fidelity of images generated from texts, unlike the oversimplified results
of Dreamfusion. However, Zero-1-to-3 and Zerol23-XL suffer from geometric
inconsistency, but our framework shows high-quality results following the ref-
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Table 2: The effects of the number of learnable tokens L = h X w X ¢ in target views
alignment for NVS on GSO [12].

| PSNR(1) SSIM(1) LPIPS({)
c=0.>5 18.26 + 0.05 0.8406 + 0.0010 0.1277 + 0.0007
c=1 18.56 + 0.09 0.8446 + 0.0018 0.1243 + 0.0015
c=2 18.51 £ 0.10 0.8441 + 0.0015 0.1251 + 0.0008

Table 3: The effects of the number of target views N for NVS on GSO |[12].

|  PSNR(1) SSIM(1) LPIPS({)
N=1 14.38 + 0.02 0.8025 + 0.0003 0.1812 + 0.0013
N=2 18.55 + 0.01 0.8451 + 0.0010 0.1221 + 0.0003
N =4 | 19.01 + 0.03 0.8501 + 0.0011 0.1190 + 0.0013
N=6 18.38 + 0.02 0.8419 + 0.0012 0.1254 + 0.0009

Table 4: The effects of using global semantic conditioning (GSC) in a view-consistency
cross-attention for NVS on GSO |[12].

|  PSNR(1) SSIM(1) LPIPS({)
ours 18.45 + 0.05 0.8409 + 0.0003 0.1240 + 0.0002
w/o GSC 18.27 + 0.05 0.8388 £ 0.0007 0.1254 + 0.0004

Table 5: The effects of changing ray positional embeddings in the view-consistency
cross-attention for NVS on GSO [12].

PSNR(1) SSIM(1) LPIPS(])
extrinsic 18.02 + 0.02 0.8329 =+ 0.0006 0.1298 + 0.000
ray o, ray d 18.41 + 0.03 0.8423 + 0.0004 0.1254 + 0.0004
Pliicker 18.45 + 0.05 0.8409 + 0.0003 0.1240 + 0.0002

erence images. Our framework also shows competitive results on image-to-3D,
while generating geometrically consistent 3D representations compared to other
methods.

4.4 Ablation Study

We conduct an extensive ablation study to evaluate the efficacy of our NVS-
Adapter in synthesizing novel views. Due to the computational costs, we evaluate
the trained models after 100K training iterations for the ablation study. For
additional ablation studies, please refer to the supplementary materials.

The number of learnable tokens. We analyze the effects of the number of
learnable tokens q, which aggregates the features of target views in Eq. . With
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a fixed number of target views N = 4, we vary the number of learnable tokens
L=h-w-cwith ¢ =0.5,1,2 for a h x w resolution U-Net block. Table [2| shows
that increasing the number of learnable tokens improves the results, since a large
number of tokens can easily preserve the information of target views. However,
NVS-Adapter with N = 4 achieves the best performance with L = hxw although
it has fewer tokens than 2 x h x w. Thus, we set the number of learnable tokens
to be h x w for each U-Net block for the rest of experiments.

The number of target views. We analyze the effects of changing the number
of target views N. We simultaneously generate all 16 views using our models
trained with N = 1,2, 4, 6 to decide the number of target views to use. Since our
NVS-Adapter with N = 1 is not supervised to jointly generate multiple view-
points, the model lacks geometric consistency when generating multiple views
together. NVS-Adapter with more target views tend to show better performance,
but expanding to N = 6 deteriorates the overall performance, since the capacity
of L = h x w learnable tokens is limited to aggregate N > 4 target views. As
shown in Figure[2] our NVS-Adapter with N = 4 consistently synthesizes multi-
views in a single generation unlike our NVS-Adapter with N = 1, which shows
different geometries for each predicted viewpoint. We set N = 4 for the rest of
experiments since it achieves the best performance.

The effects of global semantic conditioning. We conduct an ablation study
to validate the effectiveness of global semantic conditioning. Table [f] shows that
leveraging CLIP image features of a reference view enhances the semantic con-
sistency of synthesized target views. This indicates the novel views generated
without global semantic conditioning suffer from lower quality due to the lack
of semantic understanding of visual objects.

Ray positional embeddings. We examine the effects of ray positional em-
beddings on the view-consistency cross-attention. We change the Pliicker coor-
dinates, which represent the ray positions in view features, into the offset and
direction vectors of rays. In addition, we also compare the results using the em-
bedding of camera extrinsic parameters, as in Zero-1-to-3, instead of rays. Table[5]
shows that utilizing each ray’s position improves the performance, since it allows
our view-consistency cross-attention to leverage ray geometry for matching view
correspondences.

4.5 Visualization Analysis of Cross-Attention Maps

We analyze the role of our view-consistency cross-attention to align the features
of target and reference views. We visualize the mean of cross-attention maps in
the last U-Net block over the attention heads.
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Fig. 5: Visualization of attention maps of target views alignments (left) and reference
view alignments (right). For the target views alignments, each token aggregates differ-
ent regions of target views. For the reference view alignments, the queries in the target
view (red boxes) correspond to the highlighted regions in the reference view.

Target views alignment. Figure |5 (left) visualizes the cross-attention maps
that use the learnable tokens as queries and the features of target views as keys.
Each learnable token effectively aggregates and encodes the information of target
views based on the semantic and positional features, reducing redundancy. As an
example, token 1 (up) aggregates the white background of all target views, and
token 2 (middle) attends to prominent regions in the foreground. Meanwhile,
token 3 (down) attends to a specific region of the foreground, while aggregating
the same positions across different viewpoints. Thus, our method aggregates the
features of target views into a fixed number of tokens, enabling efficient synthesis
of well-aligned multi-views.

Reference view alignment. Figure [5| (right) visualizes the cross-attention
maps, considering a target and reference view as a query and a key, respectively.
Note that the highlighted regions in attention maps correspond to the query
regions (red box) in Figure [5| That is, our reference view alignment focuses
on matching target and reference view correspondences, aggregating the local
details from the reference view for consistent synthesis.

5 Conclusion

We have proposed a plug-and-play module, NVS-Adapter, for T2I models to
synthesize geometrically consistent multi-views from a single image. Our NVS-
Adapter employs view-consistency cross-attention for aligning target and refer-
ence views, and the embedding of a reference view is used for the global semantic
condition of views. The experimental results show that our plug-and-play module
is fully compatible with existing plug-and-play modules such as ControlNet
and LoRA . Moreover, our NVS-Adapter achieves superior performance in
NVS by learning geometric correspondences across views.
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